If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+3x-19=0
a = 2; b = 3; c = -19;
Δ = b2-4ac
Δ = 32-4·2·(-19)
Δ = 161
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{161}}{2*2}=\frac{-3-\sqrt{161}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{161}}{2*2}=\frac{-3+\sqrt{161}}{4} $
| 4(2x+8)=-10+34 | | 2-(5x-26)=6(x-2) | | 40x+13=5x+13 | | 0.07(4t-6)=0.28(t+3)-1.26 | | 10x+30=2x | | (10x+18)=(9x-4) | | 2(3t-7)=15t+8 | | 1/5(25-a)=4-a | | 17.4n-8=5 | | 5x=136-3x | | x+(x*18/100)=39000 | | 8t=-112 | | 4+12•2=-5v | | 4z-4+15z=-4+19z | | 11x=2x-108 | | 8(x-1)-2=2x+6(-1+x) | | -2s+4s-2=-1+2s | | 9+31=-5(5x-8) | | 5x-1=2+5 | | 4-d=-(d-9) | | 10x-7x+3=0 | | 15.00+3b=52.50 | | (4y/7)-(7/8)=17/56 | | -24=-3(5+a) | | -0.1x=-1.1 | | v/4+17=37 | | -12j+4=-3-12j | | 10+10m=100 | | (6x-28)=180 | | 1+14=-5(3x-3) | | -3k=6k+5-8k | | -10y+1=1-10y |